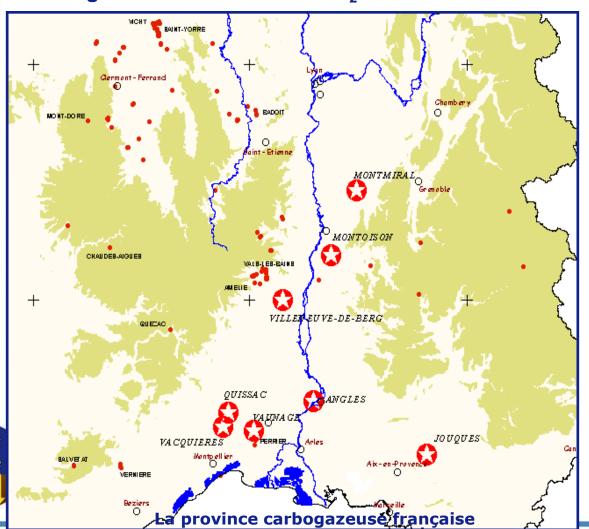
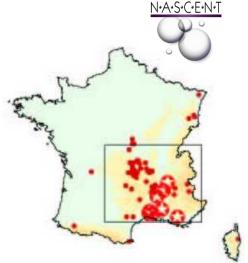

Que signifie vraiment le Captage et Stockage de CO₂?

Comment s'assurer que le CO₂ pourra être stocké en toute sécurité dans le sous-sol ?

Isabelle Czernichowski-Lauriol CO₂GeoNet President Emeritus BRGM, French Geological Survey

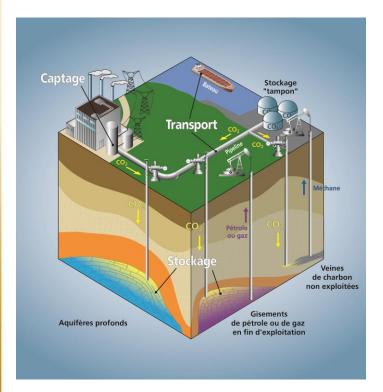
Flux de CO₂ Terre – Atmosphère




90% dues à l'utilisation des combustibles fossiles (+ production de ciment) 10% dues aux changements d'utilisation des sols (déforestation, pratiques agricoles)

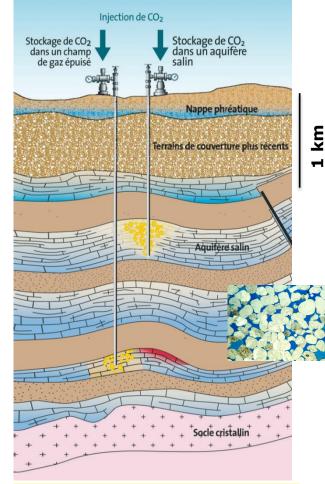
Une boucle vertueuse pour l'environnement : renvoyons le carbone dans le sous-sol!

Les gisements naturels de CO₂ en France



- Gisements naturels de CO₂
 - Eaux carbogazeuses exploitées (boissons, thermalisme)

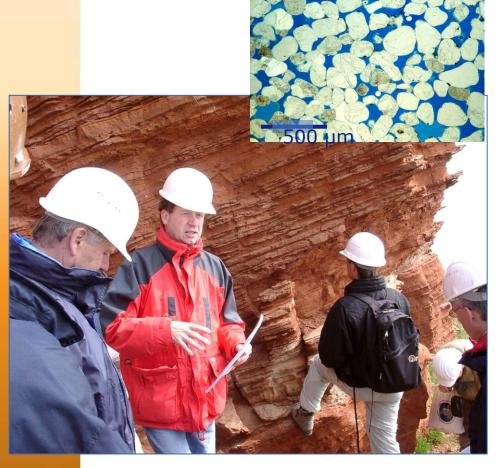
Captage et Stockage géologique du CO₂



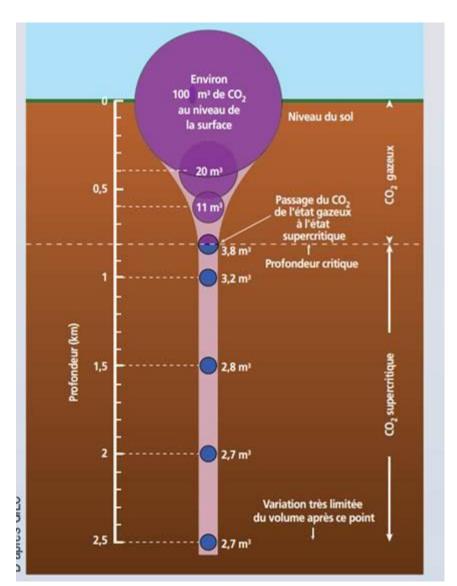
3 étapes :

- Captage
- Transport
- Stockage

Stocker le CO₂ dans le sous-sol pour :


- → réduire massivement les émissions de CO₂ des industries (centrales thermiques à charbon et gaz, sidérurgie, cimenteries, ...)
- envisager des scénarios à émissions négatives (« épuration » de l'atmosphère), par exemple si l'utilisation de la biomasse comme source d'énergie se développe

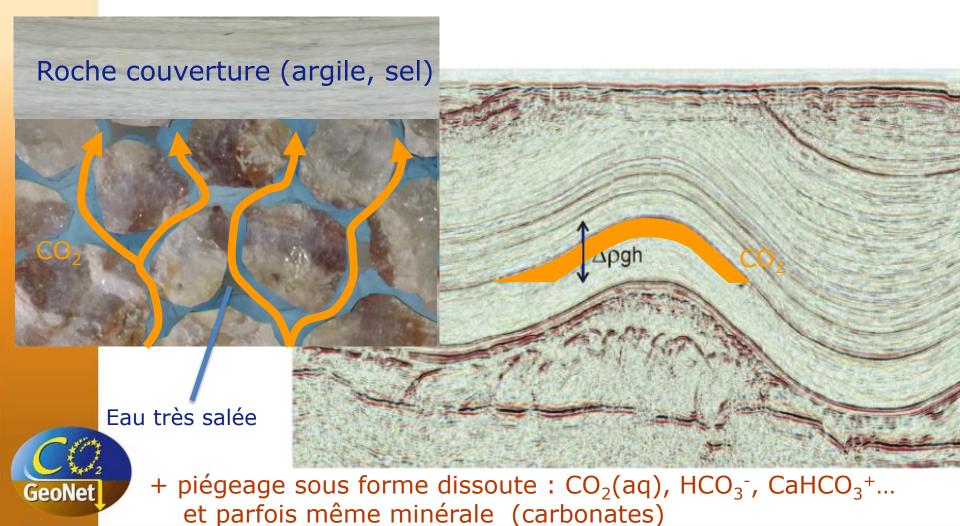
Roches réservoirs et couverture



Roche réservoir poreuse et perméable calcaires et grès

Roche couverture imperméable argile

CO₂ à l'état dense et non gazeux en profondeur



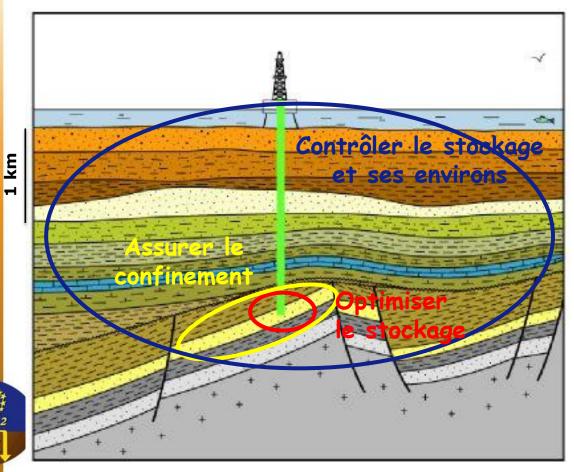
Le CO₂ devient dense en profondeur, sous l'effet de la pression et de la température.

Il occupe beaucoup moins de place donc peut être stocké plus facilement!

Remontée rapide du CO₂ dense vers le toit du réservoir – piégeage par la couche imperméable sus-jacente

Importantes avancées depuis 20 ans

- → Programmes de recherche collaboratifs sur le stockage géologique de CO₂ depuis 1993 + réseaux internationaux
- Transfert de savoir-faire de pratiques industrielles :
 - → stockage saisonnier de gaz naturel (CH₄)
 - → récupération assistée de pétrole par injection de CO₂ (CO₂-EOR)
- → Opérations industrielles pionnières (injection de 1Mt CO₂/an): Sleipner (Norvège) depuis 1996, Weyburn (Canada) depuis 2000, etc.



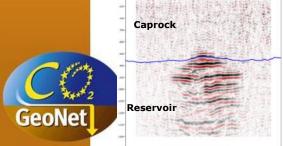
→ Pilotes de stockage (injection de Kt de CO₂ sur quelques années): Frio (USA), Nagaoka (Japon), Otway (Australie), Ketzin (Allemagne), Lacq-Rousse (France), Hontomin (Espagne)...

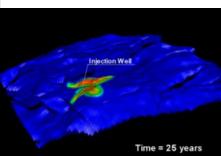
Les enjeux techniques du stockage

- Piégeage > 1000 ans (enjeu mondial climatique)
- Sécurité (enjeu local)

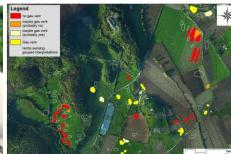
Chaque site de stockage est particulier car dépendant :

- de la géologie locale
- du contexte socioéconomique et de l'environnement local


Approche 'sur mesure' adaptée



Critères de sécurité


- 1. Choix du site adéquat et bonne caractérisation réservoir, roche couverture, formations sus-jacentes, failles, puits pré-existants, nappe phréatique, environnement de surface
- 2. Évaluation appropriée du risque (fuites, mouvements du sol ...)
- 3. Opérations d'injection et de fermeture du site menées correctement : contrôle de la composition du gaz injecté et de la pression, bonne adéquation entre modélisation et mesures, bouchage des puits
- 4. Surveillance attentive: migration du CO₂, étanchéité de la roche couverture et des puits, nappe phréatique, surface du sol ou plancher marin, écosystèmes
- 5. Plan de mesures correctives

Une large gamme d'outils et de méthodologies ont déjà été élaborés pour chacun de ces 5 critères

Sismique Modélisation Gaz des sols Télédétection

Réglementation

- → Directive européenne 2009/31/EC sur le stockage géologique de CO₂
 - → Un permis de stockage est nécessaire
 - → La demande de permis doit fournir :
 - Les données de caractérisation du réservoir de stockage et de la roche couverture, ainsi que l'évaluation de la sécurité probable du stockage
 - ❖ la quantité totale de CO₂ à injecter et à stocker, la composition du flux de CO₂, les débits et pressions d'injection
 - une description de mesures visant à prévenir des irrégularités notables
 - le plan de surveillance proposé
 - un plan de mesures correctives
 - un plan de postfermeture provisoire
- → Réglementations existantes aux Etats-Unis, Canada, Australie...
- Norme internationale ISO en préparation

Conclusion sur le stockage géologique du CO₂

- Une technologie éprouvée et sûre, prête à être déployée comme mesure d'atténuation du changement climatique
- Pour accélérer son déploiement généralisé :
 - Multiplier les expérience de terrain dans des contextes géologiques variés (pilotes, démonstrateurs)
 - Etablir des plans stratégiques de développement du stockage de CO₂ et des infrastructures de transport associées
 - Développer un cadre économique incitatif
- Synergies possibles avec les énergies renouvelables :
 - → Biomasse (émissions négatives)
 - Géothermie (extraction de chaleur)
 - Stockage d'énergie (par transformation de l'électricité excédentaire en hydrocarbures synthétiques)

Brochure CO₂GeoNet "Que signifie vraiment le stockage géologique de CO₂?" traduite en 28 languages

Contact: email: info@co2geonet.com site web: www.co2geonet.eu