

2011 CO₂ emissions: 33.8 gigatonnes

The reduction of CO₂ emissions must involve a range of activities: no single one can guarantee the necessary targets

Reduction in energy-related CO₂ emissions: 450 scenario relative to New policies

Percentage increase in total discounted mitigation costs (2015-2100) in the case where certain technologies below are not be applied (median estimate)

2100 concentrations	no CCS	nuclear	limited	limited
(ppm CO ₂ eq)		phase out	Solar / wind	bioenergy
450	138 %	7 %	6 %	64 %

- IPCC AR5 Synthesis Report -

- CCS is important both for reducing emissions from fossil fuels and also for combining with bioenergy to take CO₂ out of the atmosphere (BECCS or BioCCS)
- → Removing CCS from the mix of mitigation technologies will increase the total costs by 138% which is by far higher than removing any of the other technologies analysed (bioenergy, wind, solar, nuclear) and it may not be possible to achieve 450ppm CO₂eq (+2C) at all
- → So we really do need CCS in the portfolio of low carbon energy technologies