2011 CO $_{2}$ emissions: 33.8 gigatonnes

Percentage increase in total discounted mitigation costs (2015-2100) in the case where certain technologies below are not be applied (median estimate)

2100 concentrations $(\mathrm{ppm} \mathrm{CO}$ 2	no CCS	nuclear phase out	limited Solar / wind	limited bioenergy
450	138%	7%	6%	64%

IPCC AR5 Synthesis Report
CCS is important both for reducing emissions from fossil fuels and also for combining with bioenergy to take CO_{2} out of the atmosphere (BECCS or BioCCS)
\Rightarrow Removing CCS from the mix of mitigation technologies will increase the total costs by 138% - which is by far higher than removing any of the other technologies analysed (bioenergy, wind, solar, nuclear) - and it may not be possible to achieve 450ppm $\mathrm{CO}_{2} \mathrm{eq}(+2 \mathrm{C})$ at all

